Bounds for Convex Crossing Numbers

نویسندگان

  • Farhad Shahrokhi
  • Ondrej Sýkora
  • László A. Székely
  • Imrich Vrto
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Chromatic Numbers of some Flip Graphs

This paper studies the chromatic number of the following four flip graphs (under suitable definitions of a flip): • the flip graph of perfect matchings of a complete graph of even order, • the flip graph of triangulations of a convex polygon (the associahedron), • the flip graph of non-crossing Hamiltonian paths of a convex point set, and • the flip graph of triangles in a convex point set. We ...

متن کامل

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

Lower bounds on the maximum number of non-crossing acyclic graphs

This paper is a contribution to the problem of counting geometric graphs on point sets. More concretely, we look at the maximum numbers of non-crossing spanning trees and forests. We show that the so-called double chain point configuration of N points has Ω(12.52 ) noncrossing spanning trees and Ω(13.61 ) non-crossing forests. This improves the previous lower bounds on the maximum number of non...

متن کامل

Crossing Numbers: Bounds and Applications

We give a survey of techniques for deriving lower bounds and algorithms for constructing upper bounds for several variations of the crossing number problem. 1 aim is to emphasize the more general results or those results which have an algorith-mic avor, including the recent results of the authors. We also show applications of crossing numbers to other areas of discrete mathematics, like discret...

متن کامل

General Lower Bounds for the Minor Crossing Number of Graphs

There are three general lower bound techniques for the crossing numbers of graphs: the Crossing Lemma, the bisection method and the embedding method. In this contribution, we present their adaptations to the minor crossing number. Using the adapted bounds, we improve on the known bounds on the minor crossing number of hypercubes. We also point out relations of the minor crossing number to strin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003